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Abstract-- This paper presents a derivation and analysis of closed formulae for the membrane,
bending and reciprocal effective stiffnesses of elastic orthotropic and transversely asymmetric plates
with microstructures periodic in one direction. The derivation is based on the concept of imposing
Hencky-type displacement constraints on the solutions to the Caillerie-Kohn-Vogelius local homo
genization problems. Reduction of the dimension of the problems by one makes it possible to solve
the new approximate local problems exactly, thus enabling one to find the relevant formulae in
closed form, ready for engineering applications as well as for optimization and sensitivity studies.
This paper generalizes the previous results of the author [/111, J, SolidI' Sll'Uelurl's 29, 309-326
(1992)]. concerning the bending of transversely symmetric periodic plates.

I. INTRODUCTION

The problem ofevaluating the effective stiffnesses of thin plates of regular repeated structure
and constant thickness has been solved by Caillerie (1984, model e :::::; B), A solution to the
similar problem concerning thin homogeneous plates of periodically varying thickness can
be found in Kohn and Vogelius (1984, 1985, 1986a, model a = I). The other models
discussed in the above papers refer to very slender or very flat shapes of the cell of periodicity
and hence cannot be viewed as solutions to the original, generally posed problem.

Effective stiffnesses of plates depend upon the spatial characteristics of the periodicity
cells. A mathematical consequence is that the local homogenization problems derived by
Caillerie, Kohn and Vogelius are posed on the spatiaL rescaled periodicity cell. In view of
the usual irregularities of shape or physical properties of this cell, caused by varying
thickness, the presence of a reinforcement, etc., as well as possible discrepancies between
the material characteristics of the matrix and the inclusions, the exact solutions to the local
homogenization problems cannot be found and even finite element approximations can
only then be satisfactory if appropriate mesh refinements are adopted [cf. Guedes and
Kikuchi (1990), where similar problems, circumventing the Caillerie-Kohn-Vogelius algo
rithm, have been considered]. The difficulties arising in adhering to the Caillerie-Kohn
Vogelius algorithm justify attempts to form approximate methods based on this algorithm.

In the case when the periodicity cells can be viewed as thick plates, solutions to
Caillerie-Kohn-Vogelius local problems may be predicted similarly as in the theories of
plates with transverse shear deformation, especially by the Hencky (1947) plate model [cf.
Lewinski (199Ia, Part Ill, Sect. 5) and Telega (1992)]. The dimension of the local problems
constructed in this manner is then reduced by one: the unknown new auxiliary fields,
representing the average rotations of cross-sections and the deflection of the periodicity
cell, are defined on the plane rectangular reference domain. As has been shown in Lewinski
(1991 a, Part III; 1992. 1993), the stiffnesses found in this manner are sensitive to the
transverse proportions of the original three-dimensional periodicity cell. On the other hand,
the formulae obtained by imposing Kirchhoff constraints upon the same local problems
turn out to coincide with formulae found originally by Duvaut and Metellus (1976), being
insensitive to these proportions. which essentiall} limits their range or applicahility to the
case of periodicity cells which are thenbelves extremely flat plates.
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The significance of formulae based on the aforementioned method ofaveraging follows
from its efficiency in application to an important class of problems of averaging stiffnesses
of plates periodic in one direction. The local homogenization problems can then be reduced
to solving the sets of ordinary differential equations with variable coefficients. In many
cases these equations can be solved analytically and consequently the formulae for effective
stiffnesses assume closed forms. The significance of such formulae surpasses the usual
needs of engineering computations. These formulae are crucial in determining the effective
stiffnesses of the so-called ribbed plates of finite rank-a plate theory analogue of the
laminates of finite rank. Introduction of such composite plates into the formulation of the
compliance minimization problem regularizes the original problem, i.e. it makes the prob
lem uniquely solvable. This method of regularization originated in the papers of Cheng
(1981) and Cheng and Olhoff (1981) and was then developed by Bends0e (1987), Bends0e
et al. (1993), Kohn and Strang (1986), Kohn and Vogelius (l986b), Lur'e and Cherkaev
(1986), Rozvany et al. (1987), Bonnetier and Vogelius (1987), Lipton (1994), Allaire and
Kohn (1993, case of plane stress), Soto and Diaz (1992), and Thomsen (1992). Knowledge
of the analytical formulae for ribbed plates enables one to subsequently determine the
average stiffnesses of composite plates obtained by subsequent introduction of ribs in
alternate directions. Thus, a partly analytical treatment of such a regularized problem is
possible. Similarly, a partly analytical sensitive analysis becomes available.

Effective stiffnesses of transversely symmetric moderately thick plates regularly and
symmetrically ribbed in one direction have been examined in Lewinski (1992). The aim of
the present paper is to derive relevant formulae for transversely asymmetric plates. Use
will be made of the Hencky approximation applied to Caillerie-Kohn-Vogelius local
homogenization problems. This method, discussed briefly in Lewinski (l99lb), will be
presented in detail and illustrated with examples of plates used in engineering practice.

A briefoutline of the method used and a characterization of results obtained concerning
effective stiffnesses is now given. The method consists of several steps that may be described
as follows:

(i) The point of departure: a three-dimensional variational formulation of the equi
librium problem ofa linearly elastic, transversely unsymmetric (unbalanced) plate
with properties Y,-periodic in the in-plane x, direction; the plate is composed of
a three-dimensional periodicity cell qy by repetition along the x, axes.

(ii) Introducing a small parameter 1::; all dimensions of the periodicity cell of the plate
are now multiplied by this parameter. The problem becomes eY.-periodic.

(iii) expanding the solution of this I::-dependent problem by introducing rapid variables
Yi = xJI:: and assuming a specific two-scale representation.

(iv) Performing the small parameter analysis and finding equations governing the
first terms of the two-scale representations. These equations, forming a set of
Kirchhoff-type plate equations, refer to a hypothetical thin transversely asym
metric plate with anisotropic stiffness tensors determined by formulae involving
some special auxiliary functions. These functions are determined implicitly as
solutions to the three-dimensional problems (called local problems of Caillerie
Kohn-Vogelius) posed on the three-dimensional rescaled cell of periodicity qy.
In the case ofone-directional periodicity, this cell is two-dimensional. It is rescaled
or e-independent.

(v) Assuming that qy has the shape of a plate, one may approximate the local
problems by imposing a linear distribution of the unknown auxiliary functions
in the transverse dimension and unknown distribution in the in-plane directions.
This can be viewed as Hencky's two-dimensional modelling. In the case of one
directional periodicity this modelling reduces the Caillerie-Kohn-Vogelius local
problems to two problems involving unknown functions of one variable
YI : (n,p),Z:,·{J),X(·{i) and (Ui"fJ),<1>~,fJ), W(·!I», with ex, (J and)' assuming values I
or 2, respectively. The mathematical structure of these problems is similar to that
of the coupled problem of stretching, bending and transverse shearing of a non
homogeneous Timoshenko beam.
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(vi) The unknown functions indexed by (a,fJ) = (l, I) or (2,2) enter into the definitions
of effective stiffnesses of indicesaafJfJ. These formulae can be found analytically
irrespective of the variation of stiffnesses along YI'

(vii) the unknown functions indexed by (a,fJ) = (1,2) or (2,1) are involved in the
definitions of effective stiffnesses of indices 1212, or the in-plane shearing, recipro
cal and torsional effective stiffnesses. These functions cannot generally be found
analytically. In the case of a piecewise constant variation of stiffnesses along YI,
e.g. resulting from rapid changes of the plate thickness, the local problems can
be solved analytically and the effective stiffnesses cast in closed form expressions.
The formulae thus derived turn out to be sensitive to the transverse shape of OJ/,
in contrast to the formulae found previously by Duvaut and Metellus (1976) and
Bourgeat and Tapiero (1983).

(viii) One can prove that the tensors of effective stiffnesses found by the method
outlined above satisfy usual symmetry and positive definiteness conditions, thus
enabling the homogenized problem to be correctly posed. In the transverse sym
metry (or balanced) case, the formulae coincide with those reported previously
in Lewinski (1992).

The usual summation convention for the indices at different levels is adopted. Small
Greek letters (except for r:) run over 1,2; the Latin ones take values of 1,2,3. Moreover, the
following abbreviations for the partial derivatives are used: %xj =,j' %Yj =Ij'

2. AVERAGING OF STIFFNESSES BY THE CAILLERIEKOHN-VOGELIUS METHOD

Let us consider a plate occupying the domain

where n is a reference plane, x, are Cartesian coordinates, and e is a small parameter. The
functions c±(-) are Y-periodic, Y = (0, YI ) x (0, Y2 ). Elastic moduli C iikl(X,X3) are eY·
periodic with respect to x. Thus, there exist functions Ciikl

(-..) Y-periodic with respect to
the first variable, such that

(I)

We only consider the case when the x 3 = const planes are planes of material symmetry, i.e.

(2)

Let us define

(3)

Tensor C refers to the plane stress approximation. Plate B, is composed of the identical
segments eOJ/, the rescaled cell :w being described by

(4)

Here YI = XJe. We note that fields Ciikl are defined on!Y.
The asymptotic method discussed in Caillerie (1984). Kohn and Vogelius (1984) [cf.

also Kalamkarov et at. (1987) and Lewinski (1991 a,b)] makes it possible to decompose the
problem originally posed on the B, domain into a sequence of two-dimensional problems
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posed on the plane domain Q. The effective stiffnesses in these problems are determined by
the solutions to the auxiliary three-dimensional local problems posed on ~7j. We shall recall
below the formulations of these problems after Lewinski (1991a,b).

Let us define a function space

We7l) = (v = (1',) E [H I elf))' Iv assumes equal values at opposite lateral edges of~}

and a bilinear form

(5)

where the brackets <.) represent averaging over;!! :

(6)

Two local problems assume the form

find 8(7/1) E W(Jif) such that

find 3(7/1) E Wen such that

where h = YJ - <YJ)· Solutions to these problems are determined up to additive constants.
To make them unique we impose the following "oscillation conditions" :

(7)

The effective stiffnesses, referring to the rescaled plate composed of cells qif, are expressed
as follows:

The effective stiffnesses of plate B, are given by

(9)

where t = voleif)/area( Y). Let IV>{I, My/I represent the effective membrane forces and
moments referred to the .~.J = 0 plane, while /7/f' 1\,/1 represent the in-plane and anti-plane
deformation measures referred to the same plane. The constitutive relationships assume
the form
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(10)

One can prove that the stiffness tensors involved in egns (10) satisfy the following symmetry
conditions:

and that a constant (' > 0 exists such that for all Y = (Y'Ii)' K = (K,Ii) E M} (M} represents
the space of 2 x 2 symmetric matrices), the following estimate holds:

Uf(y K) - A ,/1;-/,. , ., +£'Ii;.I'" K +F,Pil'K y. +D,fJ}.!'K K" >- c"(}' y +K K )
~~ " - = r,/1 r;.1' = i'li ;-/1 = 'Ii 1.1l : 'Ii ii' ~ ~ 'Ii ,/1 'Ii ,/1 .

'.Ii

(12)

3. AN APPROXIMATE ALGORITHM

3.1. Simplification of the local analysis
The simplified analysis presented below refers to the case when the cell !flI can be viewed

as a moderately thick plate and moduli ("Ii do not depend upon Yh Y2, i.e.

(13)

A more stringent restriction, c,jJ = const, has been introduced in Lewinski (1991, Part III).
The approximation used here will not result in violation of the symmetry and positive
definiteness conditions (12) and (13).

The solutions to the (pr",,) problems can be decomposed as follows:

(14)

with

(15)

fields E>(,Ii), EYP) being solutions to the modified local problems:

find 0<>/1\ E W (!flI) such that

a(0('Ii), w) +<C;'J,PW;IJ) = 0 Vw E W(!flI);

find ~(,/I) E W(!flI) such that

The decomposition (14) follows from the following identities:

(16)

Solutions to the (Pr",,) problems are determined up to additive constants.
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Assume that the cell of periodicity CfY has properties of a plate of moderate thickness.
Then problems (p~oc) can be viewed as plate-type problems. The loadings involved in these
problems can be treated as initial stresses acting in the Y3 = const plane and consequently
the fields S(·fJ), S(·P) will represent displacement fields. Upon these fields the Hencky-type
constraints can be imposed:

S~'P)(y) = n,p)(Y)+.Y3 Z l,/l)(y), E>~.fJ)(y) = X(,P)(y),

~l,fJ)(y) = U~·/l)(Y)+.Y3<fJl·/l)(y), S~'/l)(y) = W(,P)(y). (17)

The fields T~'/l), Zl,/ll, X(·/ll ; U~'/ll, <fJl,/l), W(·/i) are new unknown fields ofclass H :"r( Y) [func
tions from HI (Y) assuming equal traces at opposite sides of Y], representing rotations of
cross-sections or deflections of CfY. Similar constraints are imposed upon the trial fields:

W.i.(y) = U;JY)+.Y3qJ;(Y), W3(y) = w(y), (18)

where U;, qJ.i., WE H:"r( Y)'
In Hencky's theory of plates, one also introduces the assumption of negligibility

of transverse normal stresses, i.e. (133 ;:::; 0, which modifies the constitutive relationships.
Similarly, here it will be assumed that the fields

are negligible, which makes it possible to express the quantities !.~(n) by the following
formulae:

The kinematical as well as stress assumptions adopted make it possible to reduce the
transverse dimension in (P~oc). Prior to formulating the problems reduced in this manner,
let us define the stiffnesses

(21a,b)

and the bilinear forms

A(u, v) = {kr,·oU,.,oV.i.'r}, £(u, v) = {£;r;ooU,loV;.lr},

D(u, v) = {D;r:'oU"IOV;III}, G(u, v) = {H·P upv1.},

H(u, v) = {HA1lu1;vlr}, 1(u, v) = {H.i.rv;ur},

where u, vE [H:"r ( Y)] 2 , U,V E H :"r(Y). The braces mean the averaging over Y:

{.} = /Y f Ody, dY2.
, 2 Y

(22)

Let us introduce the fields that will have the meaning of membrane forces and moments:
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With this notation the variational problems (j5~,J assume the form

similar to the Hencky equation.
Problem (j5I~C) is replaced with the problem:

E(T(x/i), q» + D(ZIX/i) , q» + G(q>, X(x/i)) + J(Z(Xfll , q» + {E;,;xflq>;'lb} = 0,

H(X(x/Il, 11') + G(Z(x/Il, 11') = 0

for all (u, q>, It') E H( Y),

while the problem (j5I~lC) now takes the following form:

(Pl~J A(Ux/!) , u) + E(<1>(x/Il, u) + {£X/1;"U"I';} = 0,

E(uxf!) , q>) + D(eD(x/i) . q> ) + G(q>, W(x/!)) + J (eD(x/1l , q» + {D ,J./I q>,IJ} = 0,

H( W(xf!), 11') + G(eD(x/I) , 11') = 0

for all (u, q>, 11') E H( Y).

3267

(23a-f)

(24)

Problems (Pi..,J of Hencky type are well posed [see Lagnese and Lions (1988)]. One can
prove that fields T(x/i), UX/i), X(x/i), W(x/I) are determined up to additive constants, while fields
Z(x/ll , eD('/!) are determined uniquely.

3.2. Approximate formulae for ellective stillnesses
Let us express the effective stiffnesses (8) with the help of solutions of problems

(PioJ. Bearing in mind decompositions (14), one obtains

(25)

Taking into account the approximations (20) and the definition (3) of the tensor C, one
finds

(26)

On substitution of the expressions given above into the definition (8), taking into account
the hypotheses (17) and performing integration over y" one finds the following approximate
expressions for the effective stiffness tensors:

SAS H-22-C
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(27a-d)

The stiffnesses thus defined should possess properties of symmetry (11) and positive defi
niteness (12). We shall prove that this is the case. By forming appropriate identities following
from the variational equations of the (l'foc) problems and linking them with formulae (27),
one arrives at the following new representations for the effective stiffnesses :

IA~/iil' = {A·f!;,I} - A(T(;P), T('IIl) - [E(Z(;/I) , T(·f!» + E(Tu!') , Z(·P»]

- D(Z(;!'), Z('II» - J(Z(A/I) , Z('II) + H(X('II) , Xl;.!'»

IF;/"I! = {E'P;!'} - A (U·/il , T(;,I» - [E(<1>('/I) , TUI'» +E(U('f!) , Z(i·/I»]

- D(<1>('f!) , Z(i·!'» -J(<1>('II) , Zu!'» + H(X(·/I), Wu!'»

IE;,,,IJ = [E'/ii!'} - A (T('11l , U;,I) - [E(T ('Ii) , <1>(;.,1» +E(Z(,f!) , ur;·,I»]

- D(Z('IIl, <1>UI'») -J(Z('II), <1>UM) + H( W(,II) , X(;·!'»

IJ5~IJ;'1 = {D,/I;,,} - A (U;lli ,UI>/i) - [E(U(i11) , <1>(,/1» +E(<1>u!') ,ur,f!»]

- D(<1>(;'li ,<1>(,111) - J(<1>UII) ,<1>(.11» +H( W(,P), W(;'!'». (28)

By symmetry of the bilinear forms A, H, J, D and E, the stiffnesses given by eqns (28)
satisfy the symmetry conditions (II).

We shall show that the energy of the effective plate,

(29)

is positive definite. To this end, we define

(30)

where

By constructing appropriate identities from equations of (Pfoc), one can prove that

w= ~. (C·II;./I y- ". )+2(C,JIJ3 y- 'y- )
~ ,11 r'll .3 P3 . (32)

Positive definiteness of (Cljk~ implies that (t'II;P), (C'm) are positive definite. Hence Wis
non-negative. Assume that W= O. Then f.p = °and f,J = 0 for all y EilJI and consequently
{f.ll} = 0, {f.J} = O. Thus, y,/I + .V3K,11 = 0 for all Y3 E(c~, c+), which implies Y,II = 0, K./I = O.
Thus, Wgiven by eqn (29) is a positive definite quadratic form and hence a constant c > 0
exists such that inequality (12) holds.

By virtue of the properties of symmetry and positive definiteness proved above, the
static problem for the effective plate with stiffnesses (27) is well posed. This holds irrespective
of introducing the shear correction to the definitions (21 b) of shearing stiffnesses H'P.
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4. ORTHOTROPIC PLATES OF STIFFNESSES PERIODICALLY VARYING ALONG ONE
ORTHOTROPY AXIS

3269

In the case of unidirectional periodicity the algorithm presented in Section 3 enables
one to express the effective stiffnesses of indices (aaf3f3) by closed formulae and, in certain
specific cases, to find closed formulae for the stiffnesses of indices (1212). Because of the
peculiar role played in the theory of plate optimization by ribbed plates of finite rank [see
Lur'e and Cherkaev (1986) and Lipton (1994)), the analytical formulae for the relevant
effective stiffnesses are of vital interest in making the plate optimization problems well
posed. Thus, the formulae for effective stiffnesses deserve a detailed derivation.

Assume that both elastic moduli and functions c±(-) are YI = a-periodic in YI and
constant in Y2, the y, axes being orthotropy axes of the material of the plate. The analytical
methods used below need reformulation of the (proc) problems to their strong form.

4.1. Strongformulation olCPL,)
The strong formulation of (PI~J will only be given for the considered case of unidi

rectional periodicity. The unknown functions n,IIJ, Z),II) , X(,II) are assumed to be of C I (0, a)
class. The variational equation (24) implies

where [cf. eqns (23)]

N:/,/iJII = 0, N:(XliJII = 0, Q:I,1iI11 = 0,

-M:/'li)11 +Q:I,IIJ = 0, ~M:('li)11 +QTI,II) = 0,

(33a-e)

Q :1'/1) = H II (XirflJ +Z\,II)), QT(,li) = H 22 Z~'IiI,

M:i';,II) = E,IIT\Yi)+D::1IZWi)+E:,II, M:('fIJ = EI212nY:)+DI212ZWi)+EI2,fl. (34a-f)

Equations (33) and (34), along with the following periodicity conditions,

(35)

constitute the strong formulation of the problem.

4.2. Solution to Cf>LJ
Note that the problem (33)-(36) splits up into two problems involving the unknowns:

Let us start with problem (a). Function X('II) will not be necessary [cf. eqns (27) and (34)].
We are looking for only the derivatives n'ii), Z\W. By eqns (33) we infer that

(37a-e)

where Aj>1iI are constants. The second condition in eqns (36) implies A~'II) = O. We equate
the first expression of eqns (34) for y = I to constant A \'11

) and the fourth equation of (34)
for y = I to the constant A~'II). We find
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where

T. Lewinski

G = (AIIIIDIIII_(£1111)2)1/2.

The braces {.} mean here a- I f: (-) dYI' Functions T\,{J) , Z\,(I) are a-periodic, hence

{T\I~)} = 0, {Z\y(i} = O. Thus, averaging both sides of eqns (38) leads to an equation that
interrelates the constants A~.,{I) :

where

C[A\,(llJ = [/YelJ, C= fill
A ~,{ll {<tt' Lr2 I

112J
In '

(39)

and

I\'gl = {(D 1111 A II'{I_£IIII E",{I)/G 2 },

fW/' = {(AIIIIEII,{J_E"IAII,{J)/G2}.

(40)

(41)

Thus, the constants A~'{il are expressed as follows:

where

In view of the symmetry of matrix C, the following identities hold:

Some of these identities can be additionally simplified by taking into account that

(43)

(44)

(45)

Equations (38)-(43) determine derivatives of functions T\'(ll, Z\,(I). These derivatives vanish
for rx t= p, which is a consequence of the orthotropy of the plate material.

Let us proceed to determination of functions n'fI), Z~,{I). Because of orthotropy
T~'" = 0, Z~'" = O. Functions: T~121, Z~12l are unknown. It turns out that in a general case
one cannot express these functions by closed formulae. Let us consider two specific cases
separately:

(A) Stiffnesses A 1212, £1212, D 1212 are of CI(O,a) class.
(B) These stiffnesses are piecewise constant.
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Consider case (A). On using eqns (34b, d, 0, eqns (33b, e) can be re-written in the
form

EI212TI12)+DI212Z(12)+EI212 - 11"' H 22 Z(12)dy +C (46)
211 211 - 211 I 2,

o

where C, are constants. The periodicity conditions (35), (36) for y = 2 can be expressed as
follows:

(47)

Let Z~12) = C I Z(YI)' Function Z satisfies the following ordinary differential equation:

(48)

where

Solution Z is uniquely determined by the conditions

Z(O) = Z(a), {H 22 Z} = O.

We shall find the constants C. Let us rearrange eqn (42) into the form

(49)

(50)

We remember that

(52)

On averaging both sides of eqns (51) and using the equalities (52), one finds algebraic
equations for constants C,.

Case (B). For simplicity we assume the following stepwise variation of moduli X1212
,

X= A, E,D:

{
X 1212

X I212 = I ,

X I212
2 '

YI Ell

YI E 12 '
X= A,E,D,

where II = (O,h l ), 12 = (hi' a), h2 = a-hi' Solutions to eqns (46) are predicted as follows:
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.. {)'I Elllor I .
)'1 E 2

We eliminate the unknowns u, and find

where

Let

Then

(53)

(54)

(55)

Solutions t'x are represented in the form

(56)

where w = a/bl' Functions Ux are of the form

UI = -f.111'I(O+bKI~+Fh ~E(O,l)

U2 = -f.12r2(~)+bK2~+F2' ~E(l,W),

(57)

(58)

where f.1x = E; 212 /A; 212. Eight constants C, Bx, K" Fx can be found from the periodicity
conditions:

(59)

and from switching conditions at point)'1 = b , or ~ = 1

Taking into account definitions (34b,e) and relations (58), quantities N: ~12)' M: ~12) can be
represented in the form
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~E(O, 1)

¢E(I,W)
(61)

¢E(O,I)

¢E(I,w).

(62)

We report the final formulae for the integration constants. Let

where

Constants K" B, are given by

(64)

(65)

(66)

(67)

and C, = - B,. Constant F I +F2 cannot be determined. Constant F I - F2 will not be used
in the sequel and that is why it is not reported.

The above results make it possible to express the effective stiffnesses AI~ 212, E,~ 212 by
closed formulae. The formulae will be given in a later part of the paper.

4.3. Strong formulation ol the (Pl"J problem
The formulation will be given only for the case of periodicity in one direction, YI' The

unknown fields U\,PI, <I>~'Pl, W<,Pl are dependent only on YI E [0, a]. The form of the strong
formulation follows from similarity between problems (PI'oc) and (P~) (see Section 4.1).
We replace:

(68)

(69)

Moreover, the free terms A;;,/I, A 12,/1 in eqns (34a, b) should be replaced with £,;,/1, E 12'11

and the free terms £0"/1, ElhP in eqns (34e, f) with D;;"fI, D 12 ,fI [see eqn (23)].
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4.4. Solution of the (P/~)J problem

4.4.1. Fields U\7/i) , et>\7!{). Proceeding similarly as in Section 4.2, we find

where B~I') are solutions to the following set of algebraic equations:

[
B\71i1] = [g\~({)]

f B(7~) g(7!i J '

2 20

where f has been defined by eqns (39) and

and

In view of the symmetry of matrix f, the following identities hold:

(71)

(72)

(73)

(74a,b)

where constants A~.7!i) are given by eqns (39) or (42). In view of relations (45) and (73),
some of these identities assume a simple form, e.g.

(75)

(76)

Note that the functions V\ 12), et>\ 12) are constant. Functions uA'liI will not be necessary in
the sequel.

4.4.2. Fields U ~7~), et>~7!i). If r:J. = [3, these functions are constant. Thus, the problem is
reduced to finding V~12), et>~121. Let us consider independently two cases of distribution of
stiffnesses along (O,a).

(A) Stiffnesses A 1212, £1212, D 1212 are of C 1(O,a) class. Despite some similarities with
problem (PI~)' the problem considered here is more difficult. The starting point is the set
of equations:

(77a,b)

where D 1 is a constant. The periodicity conditions imply
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We eliminate Uil2i and find

Thus,

where <1>", <l>h are arbitrary specific integrals of
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(78a-e)

(79)

(80)

whereas <1>, are linearly independent solutions to the equation: L<I>, = O. By eqn (77a) one
can express Ui12

) in terms of the constants D], D" D 4 and D 2 • The latter constant cancels
from both sides of eqn (78c). Thus, the three conditions (78) yield three equations for D),
D, and D4 •

(B) Stiffnesses A 1212, E 12
] 2, D 1212 are piecewise constant. We proceed as in Section

4.2.B. We assume the same distribution of stiffnesses along the (O,a) interval. The solutions
are predicted in the following form:

where

{
(E(O, I)
(E(l,W)'

(81)

(82)

We have at once assumed that B, = - ex (cf. Section 4.2). The stress resultants
Nimj, Mimi are given by

~ E (0, I)

~E(1,W)

(83)

~ E (0, I)

~E(1,W).

(84)

By periodicity and switching conditions for ( = lone can find the constants B, and K,.
These formulae will not be reported.

4.5. Formulae for effective stlfTnesses
The effective stiffnesses of the originall;,W'-periodic plate are given by eqns (9). For the

sake of simplicity we now assume <: = 1 and the abbreviation hom will be replaced with h.
Thus, the effective stiffnesses are denoted by
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Xf,/Ii" = tX~fi;I', X = .4, F, E, 15.

In view of the assumption of orthotropy, the only non-zero components of Xf,fiil' are those
for which: rx + fJ + A+ 11 assume values of 4, 6 or 8. Below we shall deal only with such
components.

(A) Stiffnesses Af,>li1i. According to eqns (27a) and (37a) we have

(85)

where A\») are determined by eqns (42). In particular,

The stiffnesses Af,>n can be determined by eqns (27a), (34a) and (38). We find

A 2222 _ {Ann) +AI22)f'(22) +A(22)'j(22 1 - A
II - J I, 10 2 20 3,

where

(86)

(87)

From the identity (44) for (rxfJ) = (II), (All) = (22), one can infer the equality

(89)

which has been proved previously in a general case [see eqns (lIa) and (27a)]. Thus,
A,: 122 = A\22).

(B) Stiffnesses Ff.>fili , Using eqns (27b), (34e) and (38), one finds

(90)

A
4

= {[E2211(EIIIIE'ln_DIIIIAI122)+D2211(EIIIIAI122_AIIIIEIIn)]/G2}.

(91)

(C) Stiffnesses Ei.,fifi. Using definition (27c) and the approximate solutions found in
Section 4.4 one finds

(92)

As = {[A2211(EI11IDI122_DIIIIEI122)+E2211(EII11EI122_AIJIIDI122)]/G 2}.

(93)

Note that A 4 = As, Moreover, using the identity (74b) one can prove that
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[cf. eqn (lib)]. Of formulae (92), the simplest one is the following:
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(94)

(95)

(D) Stiffnesses Dt,,/i/i. We make use of definitions (27d) and the results of Section 4.4.
We find

D 2222 _ iD2222}+Bo2Ig(221+B(22Iq(n'+A
!l - l I 10 2, 20 6, (96)

(97)

Using the identities (74d) one can confirm the equality D/~ln = D1,211 proved in Section
3.2 in a general case. Thus, D), W = BSm .

(E) Stiffnesses A),212.FfI2 = E),212.D,~212.

(Ei) Case of a smooth distribution of stiffnesses. Using definitions (27a,b), eqns (34b,f)
and formulae (46), one finds

(98)

The stiffnesses E),z 12, D ,; 212 can be found by definitions (27c,d), eqns (23c,d) and (77a) :

E I 2 I 2 = D D I 2 I 2 = {P( I +$1 12»} +DiE I 2 I 2 fA 12 I 2 }
" I,,, 211 1 l ' (99)

where one should insert eqn (80). The identity E), 212 = F),212 holds, but cannot be easy
inferred from the equations given above.

(Eii) Case of piecewise varying stiffnesses. Stiffnesses A), 212, F),212 are determined by
eqns (27a,b), (34b,f), (61) and (62). On using these equations one finds

where y, = b)a. The equations given above can be expressed in a form depending explicitly
upon the parameters characterizing properties of the cell of periodicity. Considering results
(66) and (67) one can rearrange expressions (100) and (101) into the form

(102)

(103)

where



3278 T. Lewinski

Fig. I. Periodicity cell {If of transversely asymmetric plate.

(104)

(lOS)

In a similar manner, one can find stiffnesses F,: 212 and DI~ 212. First, we confirm the equality

F~212 = £1,212. Then we find

where

(107)

5. EFFECTIVE STIFFNESSES OF PLATES WITH THICKNESS PIECEWISE VARYING IN
ONE DIRECTION

Consider apiate wi th thickness varying in the Y I direction, as shown in Fig. I. Assume
that the plate material is orthotropic of moduli Ciikl and constant with respect to YI, Y3' The
assumption (2) holds here as well as the definition (3) of reduced moduli relating to the
generalized plane stress state.

5.1. Preliminary computations
In the case considered the cell qy is plane (cf. Fig. I). Its area IWI equals

(108)

The quantity <Y3) equals

(109)

Thus,

(110)

We shall use further the quantity PI = I - P2. According to eqns (21) one computes the
stiffnesses as
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YI E(O,b l )

)'1 E(bl,a)'

where X = A, E, D. We find

(111)

(112)

Let

Then Pq defined by eqn (54) equals P; 212. We can easily find that

(114)

(115)

Thus, quantities (115) represent bending stiffnesses referred to middle axes (cf. Fig. 1).
We calculate stiffnesses due to transverse shear

YI E(O,b l )

)'1 E(hl,a)'
(116)

(117)

where K is a transverse shear correction factor, usually assumed as 5/6. We compute further

(l18)

5.2. Stiffnesses of indices (1212)
Taking into account of the relation /11 - /12 = - e, one finds

(119)

where

(120)

or R = 1.5Z/CI212
• In view of the relations

one can express the quantity R as follows:
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We compute further

T. Lewinski

(121)

(122)

(123)

(124)

(125)

5.3. Stiflnesses o{indices (exexf3f3)
On making use of the results of Sections 4.5 and 5.1, one arrives at the formulae for

the stiffnesses Af"fJI1 :

(126)

(127)

(128)

(129)

where

The reciprocal stiffnesses read

(131)

(132)

Moreover, Ff,,/I/' = EW'''. The bending stiffnesses are expressed as follows:

(l33a--c)

One can check that the expression
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3

-,i~~T-----~_-~_~~~_~~~~ -_ cz----l-
1"--

) Cz
~~

bl L bz I.

Y

Fig. 2. Case of a flat upper face.

(134)

represents the moment of inertia of the cross-section o/J with respect to its own neutral axis
(cf. Fig. I). Thus, eqn (l33c) can be rearranged into the form

(135)

Note that if we replace

then expressions (126)-(133) do not change their form. This means that the formulae do
not depend upon the choice of the periodicity cell.

Consider an isotropic plate with stepwise varying lower face (see Fig. 2). The geometry
of the periodicity cell is determined by bl' c" a = b l +b2 . The eccentricity e equals C2-CI'

The formulae found above apply well to the case considered.

5.4. FJfective stiffnesses in the case of transverse symmetry
The '!If cell is transversely symmetric if e = O. We put e equal to zero in eqns (126)

(133). Stiffnesses £1/';/1, F~fi;/I vanish. The non-zero stiffnesses read

(136)

and

(137)

where R is given by eqn (121).
Note that in the case considered (e = 0), only the torsional stiffness is sensitive to the

ratios b,: c, determining the transverse shape of the periodicity cell.
In the case of isotropy, one should assume
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+-__b_1_-+---~-~-----f

Fig_ 3. Hollow plate. The dashed area represents the periodicity cell 11/.

C
B2J = C

I212 = G = E E = E,
, 2(1 + v)'

(138)

where E stands for the Young's modulus and v is the Poisson ratio.

6. EFFECTIVE STiFFNESSES OF A HOLLOW PLATE

Consider a transversely symmetric plate, made of an orthotropic material with ortho
tropy axes Yh having rectangular openings located symmetrically (see Fig. 3). Stiffnesses
A~PAJl,D~Pi-Jl are computed according to eqns (21). We find

6.1. Stiffnesses ofindices (1212)
By using results found in Section 4.5. one obtains

(139)

where

6.2. Stiffnesses of indices (aafJfJ)
On using results found in Section 4.5, one arrives at

A III1 __ (_I'I +_1'2)-IC-IIII II" I1I1AI, -- = vl_,A I, ,
II 2d

l
2d

2
• ,

(141)
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h : I

I I '
-~---~-----~------

, I I
I,

, -=t:.2e h 'M

Fig. 4. Plate with reinforcement located transversely symmetric.

where E has been defined by eqn (130).

(142)

7. EFFECTIVE TORSIONAL STIFF'JESS OF A REINFORCED PLATE

Consider a plate made of isotropic elastic material of moduli C;;~I, strengthened trans
versely symmetric by a reinforcement made of isotropic material of moduli Cjkl (cf. Fig.
4). Let

'7 = C/-12/C,~,-I-, I:] = eic, I:, = h/c, I:, = a/c. (143)

According to eqn (106) the effective torsional stiffness Di 212 of the plate considered is given
by

(144)

where

(145)

(146)

The formulae for the remaining stiffnesses can be found similarly, by applying the formulae
of Section 4.5.

8 ANALYSIS OF FORMULAE FOR EFFECTIVE STIFFNESSES

8.1. Influence o/slenderness 0/ the periodicity cell
Consider the plate of Fig. 2. Let us fix """ = hja, CI, C2' We examine a family of isotropic

plates indexed by the slenderness parameter I, = a/c2' Note that stiffnesses of indices (w:xPP)
do not depend upon i; only stiffnesses of indices (1212) are sensitive to the slenderness of
the Jif cell. Together with increase of ;. the stiffnesses Ar 12, Er 12, Dr 12 grow to certain

SAl
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Fig. 5. Case of Fig. 2. Dimensions ( and c, are fixed. Influence of the i. = a:e, parameter.

asymptotic values (see Fig. 5) (case: (J = 2:5, ;'1 = 12, K = 5/6). In Fig. 5 these stiffnesses
are normalized with respect to C,(cc)', G, = 0.5£/(1 + v), i = 1,2,3, respectively.

8.2. The same plate: influence of tile ratio (J = ci/cc

Consider the family of isotropic plates of Fig. 2 such that volel/) = const, volel/) =
2Va2 = 2(h l c l +h,c,). The quantity (J = cl:c, plays the role ofa variable. It is sufficient to
consider the interval (JE [0,1]. We fix V. j'l, 1(, \' and then determine

(147)

The effective stiffnesses are hence computed at fixed V, j'l, K and v for subsequent values of
(J. The results for the data V = 1.0, ;' I = 1/2, K = 5/6 and v = 0.3 are given in Figs 6 and 7.
The remaining stiffnesses are computed according to

At the point (J = 0, referring to the case when the plate decomposes into independent
beams, only stiffnesses Di cI2 ,Al,'2',Df2' do not vanish. The graphs of
Ph = Dr1c(e = 0) [cf. eqn (124)] refer to the plate with a plane of symmetry. Note that for
(J = a and (J = 1.0, stiffnesses Ph and D i' I, assume the same values.

The coupling constants E~li'l' vanish at both ends: (J = 0, (J = I. Within the interval
[0,1] they assume one minimum of negative value.

8.3. ReinForced plate
To analyse the sensitivity of the effective torsional stiffness of the plate of Fig. 4 with

respect to the ratio 0- 1 = e:e, 0 < 1: 1 ~ 0.5, representing the relative amount of reinforcement,
and with respect to 11 = C)21'/C,;,2t:, we fix 1:2, 1:), 1'1 and K. To be specific we put 82 = 0.5,
0-) = 5.0, i'l = 0.5, K = 5:6 and consider four values of 81: 0.0, 0.1, 0.3 and 0.5 (see Fig. 8).
The curves Dr l '(11)/D':i212 cross at point (l,l), referring to a homogeneous case. If 8 1 tends
to zero, the curves considered tend to the constant function == 1.
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Fig. 7. The same family of plates. Stiffnesses Dr.'Ii" versus (J = c,/c,.
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Fig. 8. Reinforced plates of Fig. 4. Case of /;, = 0.5.1:, = 5..,', = 0.5. Torsional stiffness versus 'I·

9. FINAL RE.\!IARKS

The method presented is approximate if compared with the Caillerie (1984. e ~ e) and
Kohn-Vogelius (1984. 1985, a = 1) perfect methods of averaging and can be viewed as
refined with respect to the hitherto existing averaging methods based upon the conventional
scalings. as proposed in Duvaut and Metellus (1976) for thin balanced (transversely sym
metric) plates and in Bourgeat and Tapiero (1983) for moderately thick balanced plates.
Its relation with respect to the aforementioned averaging methods follows clearly from Fig.
5. The upper asymptote for X)/ 12, X = A, E, D, refers to the in-plane (conventional) scaling
of Hencky-type problems (P~)C) (cf. Section 3.1). In the transversely symmetric case. this
method was originated by Bourgeat and Tapiero (1983). Thus, the upper asymptotes
can be viewed as Bourgeat-Tapiero type approximations. On the other hand, the lower
asymptotes can be interpreted as results based upon the e --> O. then e --> 0 model of Caillerie
(1984) and the a < I model of Kohn and Vogelius (1984, 1985). These results can also be
viewed as Duvaut-type approximations, since they can be arrived at by the asymptotic
homogenization of the relevant Kirchhoff problem for the asymmetric plates considered, if
based on conventional scaling, as used in Duvaut and Metellus (1976). Thus, the formulae
for effective stiffnesses reported here provide us with results lying between predictions of
the two two-dimensional averaging methods based upon in-plane scalings.

The formulae reported are ready for applications in the regularized optimization
problems of anisotropic transversely asymmetric plates.
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